Reaction of Zero-valent Cobalt and Iron Species with Seven-atom Carbaboranes; Molecular Structures of $[4-(Et_3P)-1.7-Me_2-\mu_{4.8}-$ **{Co(H)-** $(PEt_3)_2 - \mu(H) - \mu(PEt_2) - 1, 4, 7-CCOCB₅H₄]$ and **[4,4,4-(Bu'N @),-I ,7- Me,-1 ,4,7-CFe@B5H,]**

Geoffrey K. Barker,a Maria P. Garcia,a Michael Green,a F. Gordon A. Stone,a Hans E. Parge,^b and Alan J. Welch **b**

^a*Department of Inorganic Chemistry, The University, Bristol BS8 I TS, U.K.*

^b*Department of Chemistry, The University, Edinburgh EH9 3JJ, U.K.*

Reaction of closo-2,4-Me₂-2,4-C₂B₅H₅ with [Co(PEt₃)₄] affords a novel dicobalthydrido-complex containing a phosphido-bridge, whereas $[Fe(C\bar{N}But)_{5}]$ reacts to form a mononuclear 8-atom cage, in which the iron atom has a cluster connectivity of five.

In exploiting the direct insertion reaction¹ as a synthetic pathway to metallacarbaboranes, we have examined the reaction of the zero-valent cobalt species $[Co(PEt₃)₄]$ ² with clos_0 -2,4-Me₂-2,4-C₂B₅H₅, and have observed an unusual reaction which affords a complex containing a bridgedphosphido-ligand and an exopolyhedral cobalt-cobalt bond. In contrast, the zero-valent iron complex $[Fe(CNBu^t)₅]$ ³ yields a closo-mononuclear cage.

4-(Et₃P)-1,7-Me₂-
$$
\mu
$$
_{4,8}-{Co(H)(PEt₃)₂- μ (H)- μ (PEt₂)}-1,4,7-
CCoCB₅H₄
(1)

Reaction (2 h, room temperature) of $[Co(PEt₃)₄]$ with an excess of $closo-2$, 4-Me₂-2, 4-C₂B₅H₅ in hexane affords dark brown *crystals* of **(1)** (70"/,, vmax(BH) 2 525s, 2 *505s,* and 2 495s cm⁻¹, $v_{max}(COH)$ 1 955m cm⁻¹ (Nujol). N.m.r.: ¹H $({}^{2}H_{8})$ toluene), δ 2.36 (s, 3H, cage Me), 2.17 (s, 3H, cage Me), 1.76 [m, 4H, $P(CH_2Me)_2$], 1.53 [m, 18H, $P(CH_2Me)_3$], 1.25 [m, 6H, P(CH₂Me)₂], 0.98 [m, 27H, P(CH₂Me)₃], -9.0 (br. s, IH, CoHB), and -17.5 [d of t, IH, CoH, J(PH) *55* and 23 Hz]; ^{31}P {¹H } ([²H_s]toluene, - 80 °C), δ 104.2 [d of t, P^{B} , $J(P^{B}P^{D})$ 110, $J(P^{B}P^{C})$ 37, $J(P^{B}P^{A})$ 39 Hz], 36.1 [d of d, P^{D} , $J(\overline{P}^{D}P^{B})$ 110, $J(\overline{P}^{D}P^{C})$ 17 Hz], 29.2 (br. s, P^{C}), and 25.2 p.p.m. $[d, P^A, J(P^AP^B)$ 39 Hz]; ¹¹B^{{1}H } ([²H₈]toluene), δ 47.2 (1B), 12.9 (1B), -1.05 (2B), and -11.4 p.p.m. (1B) }. The presence in the n.m.r. spectra of signals assignable to two types of metal hydride and four ³¹P environments suggested an unusual structure, and therefore a single crystal X -ray diffraction study was carried out.

Crystal data for (1): \dagger C₂₆H₆₇Co₂B₅P₄, *M* 675.6, triclinic, *a* = 9.976(2), $b = 10.306 \, 8(18), c = 19.355(3) \, \text{\AA}, \alpha = 82.923(13),$ $\beta = 101.363(14)$, $\gamma = 109.040(15)$ °, $U = 1840.6$ Å³, $D_c =$ 1.219 g cm⁻³, $Z = 2$, $F(000) = 724$ electrons, μ (Mo- K_{α}) = 11.23 cm--l, space group *f'7* from E-statistics and successful refinement. Intensity data were collected (291 K) on an Enraf-Nonius CAD4 diffractometer, and the molecular structure solved (Patterson) and refined (full-matrix least squares) using 4 742 $[F_0 \ge 2.0\sigma(F_0)]$ out of 7 136 data to $\theta_{\text{max}} = 26^{\circ}$ (Mo- K_{α} X-radiation, $\bar{\lambda} = 0.71069 \text{ Å}$). *R* is currently 0.046 8.

The structure (Figure 1) is based on a 1,4,7-CCoCB₅ *closo*dodecahedron. However, the $Co(4)-B(8)$ connectivity is bridged by a ${Co(H)(PEt₃)₂}$ moiety, with the bridging links themselves bridged, $Co(4)-Co(48)$ by a phosphido-function ($P^BEt₂$) and B(8)–Co(48) by a hydride H³. The atom B(8) carries no terminal hydrogen, but co-ordination at Co(4) is completed by a single phosphine ($P^{\text{A}}Et_{3}$).

^{-/-} The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge **CB2** IEW. Any request should be accompanied by the full literature citation for this communication.

Figure 1. Molecular structure of $4-(Et_3P)-1,7-Me_2-\mu_{4,8}-(Co(H)-(PEt_3)_2-\mu(H)-\mu(PEt_2))-1,4,7-CCoCB_5H_4$, (1), with ethyl groups, (PEt₃)₂- μ (H)- μ (PEt₃) }-1,4,7-CCoCB₅H₄, (1), with ethyl groups, and methyl and cage terminal H atoms, omitted for clarity. Important internuclear distances : Co(4)-C(**1)** 2.1 I3(5), Co(4)- B(2) 2.087(6), Co(4)-B(6) 2.297(7), Co(4)-B(8) 1.935(5), CO(4)- B(5) 2.228(6), Co(4) **-PA** 2.229(2), C0(4)-P" 2.161(2), CO(4)- $Co(48)$ 2.683(1), B(8)– $Co(48)$ 2.084(5), B(8)–H^B 1.22(3), Co(48)– H^B 1.60(3), Co(48)-H^T 1.40(3), Co(48)-P^C 2.195(2), and H^B 1.60(3), Co(4
Co(48)-P^D 2.218 A.

Figure 2. Schematic representation of the bonding in compound $(1).$

Such a system is without precedent in heteroborane chemistry. **A** feasible representation of the bonding in **(l),** which meets the electronic requirements of both a *closo*-polyhedron and eighteen electron shells for the metal atoms, is given schematically in Figure 2. We have previously synthesised I 7-electron **bis(triethy1phosphine)carbacobaltaboranes** and 18-electron hydridobis(triethylphosphine)carbacobaltaboranes from insertion of Co(PEt₃)₂ fragments into *closo*carbaboranes,⁴ but no analogous compounds were isolated in the reaction affording complex **(1).**

In contrast, reaction (24 h, 60° C) of closo-2,4-Me₂-2,4-C₂B₅H₅ with the zero-valent iron complex [Fe(CNBu^t)₅] afforded the mononuclear species (2) as orange *crystals* $[65\%, \nu_{\text{max}}(BH)$ 2 509s, 2 505s cm⁻¹, $\nu_{\text{max}}(NC)$ 2 035s, 2 022s, 2 015s cm⁻¹ (Nujol)].

$$
4,4,4-(\text{ButNC)3-1,7-Me2-1,4,7-CFeCB5H5}
$$

(2)

Crystal data for (2):† $C_{19}H_{38}FeB_5N_3$, *M* 418.2, monoclinic, space group $P2_1/c$, $a = 16.585(2)$, $b = 9.472(2)$, $c = 19.270(2)$

Figure 3. Molecular geometry of 4,4,4-(Bu⁺NC)₃-1,7-Me₂-1,4,7-CFeCB₅H₅, (2), with H atoms and Bu⁺N functions omitted for clarity. Important molecular parameters include Fe(4)–C(1)
2.065(8), Fe(4)–B(2) 2.117(9), Fe(4)–B(6) 2.282(10), Fe(4)–B(8)
2.017(11), Fe(4)–B(5) 2.197(11), Fe(4)–C(411) 1.855(9), Fe(4)–
C(421) 1.829(9), Fe(4)–C(431) 1.781(C(421)-N(42) 1.136(11), and C(431)-N(43) 1.193(11) **A.**

 \AA , $\beta = 114.36(2)$ °, $U = 2757.5 \,\text{\AA}$ ³, $D_c = 1.008 \,\text{g cm}^{-3}$, $Z = 4$, $F(000) = 896$ electrons, μ (Mo- K_{α}) = 5.16 cm⁻¹. Out of 6 527 symmetry-independent reflections measured to $\theta_{\text{max}} = 28.5^{\circ}$, 2 927 data $[F_0 > 2.0\sigma(F_0)]$ were used to solve and refine, as for **(l),** to a current *R* of 0.099 3.

Eigare 3. Molecular geometry of 4,4,4-(Bu¹NC_{1r}-1,7-Me₂-1,4,7-

(a) CFeCCB₃H₃(2), with H atoms and Bu¹N factnios omitted for

2.005(8), Fe(4)-B(5) 2.1170), Fe(4)-B(5) 2.1170), Fe(4)-B(5) 2.197(11), Fe(4)-C(411) The cage geometry of **(2)** (Figure 3) is that of a dodecahedron, with the metal occupying a 5-connectivity vertex, adjacent to only one cage carbon atom. Molecular parameters within the polyhedron are unexceptional. Co-ordination of the isocyanide ligands, however, strongly reflects the nature of the cage atoms to which they are trans,⁵ that opposite carbon being the most strongly bound. Thus $Fe(4)-C(431)$ is significantly the shortest, and $C(431)$ –N(43) the longest bond of its type. In addition, bending³ occurs only at $N(43)$ [156.3(11)^o].

Similarities and differences are thus shown between reaction products of $closo-2,4-Me₂-2,4-C₂B₅H₅$ with the molecules $[Fe(CNBu^t)_5]$, $[Pt_2(\mu$ -cyclo-octa-1,5-diene) (PEt₃)₄], and $[Co(PEt₃₎,]$. With $[Fe(CNBu^t)₅]$, the carbaborane affords a relatively undistorted cage in which the metal is electronically saturated. With platinum¹ the cluster is severely distorted, and susceptible to facile insertion of a second $Pt(PEt₃)₂$ fragment to generate a 9-vertex carbadimetallaborane. Cobalt, too, yields a dimetallic species, but one in which only one metal atom lies within the polyhedral surface.

We thank the **S.E.R.C.** for support.

Received, 22nd March 1982; Com. 327

References

- G. **K.** Barker, M. P. Garcia, M. Green, F. G. **A.** Stone, and **A.** J. Welch, *J. Chem. Sue., Cheni. Cuniniun.,* 1982, 46; and references therein.
- 2 Prepared by a simple extension of the procedure described for the trimethylphosphine analogue: H. F. Klein, *Angew. Chem.*, *lnt. Ed. Engl.,* 1980, **19,** 375.
- J-M. Bassett, D. E. Berry, G. **K.** Barker, M. Green, J. **A.** K. Howard, and F. G. **A.** Stone, *J. Chem. Sue., Dalton Trans.,* 1979, 1003.
- G. **K.** Barker, M. Green, M. **P.** Garcia, **F.** G. **A.** Stone, J-M. Bassett, and **A. J.** Welch, *f. Chern. Suc., Chem. Cowimun.,* 1980, 1266.
- G. **K.** Barker, **M.** P. Garcia, M. Green, G. N. Pain, F. G. **A.** Stone, *S.* **K.** R. Jones, and **A.** J. Welch, *J. Cheni. Sue., Chern. Cumnlun.,* 1981, 652; and references therein.